Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
857686
Reference Type
Journal Article
Title
Intracellular anion fluorescence assay for sodium/iodide symporter substrates
Author(s)
Di Bernardo, J; Iosco, C; Rhoden, KJ
Year
2011
Is Peer Reviewed?
Yes
Journal
Analytical Biochemistry
ISSN:
0003-2697
EISSN:
1096-0309
Volume
415
Issue
1
Page Numbers
32-38
Language
English
PMID
21545783
DOI
10.1016/j.ab.2011.04.017
Web of Science Id
WOS:000291407900005
URL
http://
://WOS:000291407900005
Exit
Abstract
The sodium/iodide symporter (NIS) is primarily responsible for iodide accumulation in the thyroid gland for the synthesis of thyroid hormones; however, it can also transport other lyotropic anions in the thyroid gland and nonthyroid tissues. Some NIS substrates have important physiological or clinical roles, and others are environmental contaminants with health-related consequences. The aim of this study was to assess the utility of a yellow fluorescent protein variant, YFP-H148Q/I152L, as a biosensor to monitor the cellular uptake of NIS substrates, including thiocyanate (SCN(-)), nitrate (NO(3)(-)), chlorate (ClO(3)(-)), perchlorate (ClO(4)(-)), and perrhenate (ReO(4)(-)). The fluorescence of purified YFP-H148Q/I152L was suppressed by anions with an order of potency of ReO(4)(-)>ClO(4)(-)=I(-)=SCN(-)=ClO(3)(-)>NO(3)(-)≫Cl(-). Anions also suppressed the fluorescence of YFP-H148Q/I152L expressed in FRTL-5, a thyroid cell line with high NIS expression. Quantitation of intracellular concentrations revealed differences among anions in the affinity and maximal velocity of NIS-mediated uptake as well as in the rate constant for passive efflux. These results suggest that YFP-H148Q/I152L can serve as an intracellular biosensor of NIS-transported anions and may be useful to study the physiology of endogenous anions as well as the health-related consequences of environmental anions.
Keywords
Fluorescence microscopy; Biosensor; Intracellular concentration; Yellow fluorescent protein; Anions; Thiocyanate; Nitrate; Chlorate; Perchlorate; Perrhenate; Thyroid gland
Tags
IRIS
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
PubMed
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity