Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
864614
Reference Type
Journal Article
Title
Free-radical chemistry of disinfection byproducts. 3. Degradation mechanisms of chloronitromethane, bromonitromethane, and dichloronitromethane
Author(s)
Mincher, BJ; Mezyk, SP; Cooper, WJ; Cole, SK; Fox, RV; Gardinali, PR
Year
2010
Is Peer Reviewed?
1
Journal
Journal of Physical Chemistry A
ISSN:
1089-5639
EISSN:
1520-5215
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Volume
114
Issue
1
Page Numbers
117-125
Language
English
PMID
20055512
DOI
10.1021/jp907305g
Web of Science Id
WOS:000273268900016
Abstract
Halonitromethanes (HNMs) are byproducts formed through ozonation and chlorine/ chloramine disinfection processes in drinking waters that contain dissolved organic matter and bromide ions. These species occur at low concentration but have been determined to have high cytotoxicity and mutagenicity and therefore may represent a human health hazard. In this study, we have investigated the chemistry involved in the mineralization of HNMs to nonhazardous inorganic products through the application of advanced oxidation and reduction processes. We have combined measured absolute reaction rate constants for the reactions of chloronitromethane, bromonitromethane, and dichloronitromethane with the hydroxyl radical and the hydrated electron with a kinetic computer model in an attempt to elucidate the reaction pathways of these HNMs. The results are compared to measurements of stable products resulting from steady-state (60)Co gamma-irradiations of the same compounds. The model predicted the decomposition of the parent compounds and ingrowth of chloride and bromide ions with excellent accuracy, but the prediction of the total nitrate ion concentration was slightly in error, reflecting the complexity of nitrogen oxide species reactions in irradiated solution.
Tags
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
PubMed
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity