Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8715279
Reference Type
Journal Article
Title
Rhodium catalyzed hydroformylation of 1,1-bis(p-fluorophenyl)allyl or propargyl alcohol: A key step in the synthesis of Fluspirilen and Penfluridol
Author(s)
Botteghi, C; Marchetti, M; Paganelli, S; Persi-Paoli, F
Year
2001
Is Peer Reviewed?
1
Journal
Tetrahedron
ISSN:
0040-4020
Volume
57
Issue
8
Page Numbers
1631-1637
Language
English
DOI
10.1016/S0040-4020(00)01151-0
Abstract
Fluspirilen (1) and Penfluridol (2), two neuroleptic agents, belong to a wide class of pharmaceuticals that contain in their molecules a 4,4-bis(p-fluorophenyl)butyl group bound to a nitrogen atom of a pyrrolidine, piperidine or piperazine moiety. A key intermediate for the synthesis of compounds 1 and 2,4,4-bis(p-fluorophenyl)butylbromide (15), has been prepared starting from commercially available 4,4′-difluorobenzophenone (7) following a preparative route involving the rhodium catalyzed hydroformylation in toluene or in the biphasic system toluene/water or cyclohexane/water of 1,1-bis(p-fluorophenyl)-2-propenol (8) and/or 1,1-bis(p-fluorophenyl)-2-propynol (12). Fluspirilen and Penfluridol were obtained in 70-80% yield by reaction of bromide 15 with 1-phenyl-1,3,8-triazaspiro[4,5]decan-4-one (16) and 4-[4-chloro-3-(trifluoromethyl)phenyl]-4-piperidinol (17), respectively. The overall yields of the two pharmaceuticals 1 and 2, based on starting ketone 7, were about 35-40%. 2001 Published by Elsevier Science Ltd.
Keywords
Fluspirilen; Hydroformylation; Penfluridol
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity