Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8715961
Reference Type
Journal Article
Title
Nanobioremediation of soils contaminated with lindane: Overview and research challenges
Author(s)
Zhao, L; Chetri, JK; Reddy, KR
Year
2020
Publisher
Springer Science and Business Media Deutschland GmbH
Volume
89
Page Numbers
195-205
Language
English
DOI
10.1007/978-3-030-51350-4_21
Abstract
γ-hexachlorocyclohexane (γ-HCH, also called γ-BHC and lindane) as a halogenated organic insecticide has become an issue of environmental concern over the years. The isomers of hexachlorocyclohexanes (HCHs) mainly consist of α-HCH, β-HCH, γ-HCH, and δ-HCH. Among these isomers, only γ-HCH has insecticidal applications and thus, leading to cumulative toxic effects through bioaccumulation in food chains. The demand for techniques to decontaminate γ-HCH in soils is gradually growing. The previous studies investigated integrated nanobioremediation techniques involving the use of nanoparticles and indigenous microbes, on the degradation of halogenated organic contaminants, especially lindane, in soils and groundwater. The application of nanomaterials, for instance nanoscale zero-valent iron (nZVI), has recently been researched extensively. However, its efficiency is limited by low aqueous solubility and high hydrophobicity of the contaminants. Moreover, the degradation of contaminants by nanomaterials may not be complete resulting relatively high levels of toxic intermediates. This critical review highlights (i) the applications of nanoparticles for the degradation of γ-HCH (nanoremediation); (ii) the applications of microorganisms for γ-HCH remediation (bioremediation); and (iii) the combination of nanoremediation and bioremediation through the application of nanomaterials and microbes, respectively, in order to achieve effective remediation of γ-HCH (nanobioremediation). Further research on effective biological methods complementing nanoremediation is needed to the development of effective and efficient remediation strategies for recalcitrant halogenated organic contaminants in the subsurface environments. Springer Nature Switzerland AG 2020.
Keywords
Bioremediation; Contaminated soils; Lindane; Microorganisms; Nanobioremediation; Nanoremediation; Nanoscale iron particles
Editor(s)
Dubey, B. K.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity