Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8743067
Reference Type
Journal Article
Title
Evaluation of a comprehensive non-toxic, biodegradable and sustainable cutting fluid developed from coconut oil
Author(s)
Suvin, PS; Gupta, P; Horng, JH; Kailas, SV
Year
2021
Is Peer Reviewed?
Yes
Journal
Institution of Mechanical Engineers. Proceedings. Part J: Journal of Engineering Tribology
ISSN:
1350-6501
Volume
235
Issue
9
Page Numbers
1842-1850
Language
English
DOI
10.1177/1350650120975518
Web of Science Id
WOS:000680112900001
Abstract
The evolution in development of cutting fluid from petroleum based products have brought about remarkable changes to the present and growing machining industry. Most of the cutting fluids are made of mineral base oils which are toxic, non-biodegradable and unsustainable. A major issue lies in their inappropriate disposal which results in surface water and groundwater contamination and consequently, agricultural products and food contamination. Hence, the objective of this study is to develop an alternative, sustainable, non- toxic and completely bio-degradable cutting fluid to replace the mineral oil based cutting fluid. A Green cutting fluid [GCF] was prepared by combining nontoxic emulsifiers and natural additives. GCF meets many of the characteristic specifications of commercial formulations with the added advantage that it is eco-friendly. Toxicity test for cutting fluids has been carried out using fish toxicity test (OECD -203). The GCF with green additives has an LC50 value ≥1064 mg/L. Commercial cutting fluid (CCF) has an LC50 value less than 100 mg/L These tests show that commercial cutting fluids are highly toxic, while the GCF can be considered as non-toxic. Biodegradability test was done using BOD-COD technique and found GCF as biodegradable and CCF as non-biodegradable. The ASTM D4627 corrosion tests infer that the GCF with grade 3 has better anticorrosive characteristics when compared to grade 4 of most CCF samples tested this could be possibly by the effect of natural additives in GCF. Drilling experiments were carried out to evaluate the machining performance of cutting fluids. Results from the drilling tests comparing the axial force/cutting force and torque showed that the performance of the GCF was comparable to that of the CCFs. Nevertheless, GCF formulation with non- toxic emulsifiers and natural additives is a good basis for further development and use of non-toxic tribological products. © IMechE 2020.
Keywords
biodegradability; coconut oil; cutting fluid; toxicity; Tribology
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity