Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8764223
Reference Type
Journal Article
Title
Antioxidant activity of highly hydroxylated fullerene C60 and its interactions with the analogue of α-tocopherol
Author(s)
Grebowski, J; Konopko, A; Krokosz, A; Dilabio, GA; Litwinienko, G
Year
2020
Is Peer Reviewed?
Yes
Journal
Free Radical Biology and Medicine
ISSN:
0891-5849
EISSN:
1873-4596
Publisher
Elsevier
Volume
160
Issue
Elsevier
Page Numbers
734-744
Language
English
PMID
32871231
DOI
10.1016/j.freeradbiomed.2020.08.017
Web of Science Id
WOS:000594859300002
URL
https://linkinghub.elsevier.com/retrieve/pii/S0891584920312120
Exit
Abstract
Polyhydroxylated fullerenes (fullerenols) are excellent free radical scavengers. Despite the large number of reports on their reactions with reactive oxygen species, there is no report on their ability to trap lipid peroxyl radicals and act as chain-breaking antioxidants. In this work we studied the effect of fullerenol C60(OH)36 on the kinetics of peroxidation of polyunsaturated fatty acid ester (methyl linoleate) dispersed in two model systems that mimic biological systems: Triton X-100 micelles and Large Unilamellar Vesicles, at pH 4, 7 and 10. As a control antioxidant 2,2,5,7,8-pentamethyl-6-hydroxychroman (PMHC, an analog of α-tocopherol) was used. In micellar systems at pH 4.0, C60(OH)36 reacts with peroxyl radicals with kinh= (5.8 ± 0.3) × 103 M-1s-1 (for PMHC kinh = 22 × 103 M-1s-1). Surprisingly, at pH 7 a retardation instead of inhibition was recorded, and at pH 10 no effect on the kinetics of the process was observed. In liposomal systems fullerenol was not active at pH 4.0 but at pH 7.0 kinh = (8.8 ± 2.6) × 103 M-1s-1 for fullerenol was 30% lower than kinh for PMHC. Using two fluorescent probes we confirmed that at pH 7.4 fullerenol/fullerenol anions are incorporated into the phospholipid heads of the bilayer. We also studied the cooperation of C60(OH)36 with PMHC: both compounds seem to contribute their peroxyl radical trapping abilities independently at pH 4 whereas at pH 7 and 10 a hyper-synergy was observed. The antioxidant action of C60(OH)36 and its synergy with PMHC was also confirmed for peroxidation of human erythrocytes at pH 7.4. Assuming the simplified structural model of fullerenol limited to 36 hydroxyls as the only functional groups attached to C60 core we found by density-functional theory a low energy structure with OH groups distributed in the form of two polyhydroxyl regions separating two unsubstituted carbon regions with biphenyl-like structure. Our calculations indicate that abstraction of hydrogen atom from fullerenol by peroxyl or tocopheroxyl radical is endoergic. As the electron transfer from fullerenol polyanion to the radicals is also energetically disfavoured, the most probable mechanism of reaction with radicals is subsequent addition of peroxyl/tocopheroxyl radicals to biphenyl moieties surrounded by OH groups.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity