Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
8790498
Reference Type
Journal Article
Title
Phase behavior and ionic conductivity in lithium bis(trifluoromethanesulfonyl)imide-doped ionic liquids of the pyrrolidinium cation and Bis(trifluoromethanesulfonyl)imide anion
Author(s)
Martinelli, A; Matic, A; Jacobsson, P; Börjesson, L; Fernicola, A; Scrosati, B
Year
2009
Is Peer Reviewed?
Yes
Journal
Journal of Physical Chemistry B
ISSN:
1520-6106
EISSN:
1520-5207
Volume
113
Issue
32
Page Numbers
11247-11251
Language
English
PMID
19621942
DOI
10.1021/jp905783t
Web of Science Id
WOS:000268661100027
Abstract
The phase behavior and the ionic conductivity of ionic liquids (ILs) of the N-alkyl-N-alkylpyrrolidinium (PYR(xy)) cation and the bis(trifluoromethanesulfonyl)imide (TFSI) anion are investigated upon addition of LiTFSI salt. We compare the case of two new ILs of the PYR(2y) cation (where 2 is ethyl and y is butyl or propyl) with that of the PYR(14) (where 1 is methyl and 4 is butyl). We find that the addition of LiTFSI increases the glass transition temperature, decreases the melting temperature and the heat of fusion and, in the ILs of the PYR(2y) family, suppresses crystallization. In the solid state, significant ionic conductivities are found, being as high as 10(-5) S cm(-1), strongly increasing with Li(+) concentration. The opposite trend is found in the liquid state, where the conductivity is on the order of 10(-3)-10(-2) S cm(-1) at room temperature. A T(g)-scaled Arrhenius plot shows that the liquid-state ionic conductivity in these systems is mainly governed by viscosity and that the fragility of the liquids is slightly influenced by the structural modifications on the cation.
Tags
•
PFAS Universe
Data Source
Web of Science
Lithium bis[(trifluoromethyl)sulfonyl]azanide
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity