Health & Environmental Research Online (HERO)


Print Feedback Export to File
9570444 
Journal Article 
Development of Predictive Expressions for Infinite Dilution Activity Coefficients, Molar Solubilities and Partition Coefficients for Solutes Dissolved in 2-Pyrrolidone Based on the Abraham Solvation Parameter Model 
Magsumov, T; Sedov, IA; Acree, WE, Jr 
2021 
Yes 
Journal of Solution Chemistry
ISSN: 0095-9782
EISSN: 1572-8927 
English 
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for two saturated (2,2,4-trimethylpentane, cyclooctane) and 3 unsaturated hydrocarbons (1,7-octadiene, 1-hexyne, 4-vinyl-1-cyclohexene), one aromatic hydrocarbon (propylbenzene), one haloalkane (1,3-dichloropropane) and four halobenzenes (fluorobenzene, chlorobenzene, 1,2-dichlorobenzene, bromobenzene), two cyclic ethers (tetrahydrofuran, 1,4-dioxane), two alcohols (1-propanol, 2-propanol), three alkyl acetates (ethyl acetate, butyl acetate, pentyl acetate), and one alkanenitrile (acetonitrile) dissolved in 2-pyrrolidone at 298.15 K. The experimental results of the headspace chromatographic measurements, combined with published solubility and infinite dilution activity coefficient data, were used to derive Abraham model correlations for describing solute transfer into 2-pyrrolidone. Mathematical correlations based on the Abraham model describe the observed partition coefficient and activity coefficient data to within 0.14 log(10) units (or less). 
Infinite dilution activity coefficients; Gas-to-liquid partition coefficients; 2-Pyrrolidone solvent; Headspace chromatographic measurements; Abraham model correlations