Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
9642224
Reference Type
Journal Article
Title
Ion-Pair Formation of [CoIII(pn)2(Cl)(L)2+····· I−] by Aqueous-Organic Solvent Medium Enhanced Photoreduction: A Perspective Regression Analysis
Author(s)
Stephen, LD; Gunasekaran, SG; Soundarrajan, M; ,
Year
2020
Is Peer Reviewed?
Yes
Journal
Asian Journal of Chemistry
ISSN:
0970-7077
EISSN:
0975-427X
Page Numbers
1379-1383
DOI
10.14233/ajchem.2020.22598
URL
http://www.asianjournalofchemistry.co.in/user/journal/viewarticle.aspx?ArticleID=32_6_18
Exit
Abstract
Reduction of CoIII centre in CoIII(pn)2(Cl)(L)2+ with reference to solvent medium and structure of the complex via ion pair charge transfer (IPCT) paves way for the novel reaction mechanism route. In this work, we prepared, characterized and photoinduced the complexes CoIII(pn)2(Cl)(L)2+ (where L = RC6H4NH2, R = m-OMe, p-F and H) in the presence of iodide ion. Quantum yield for 254 nm excitation of CoIII(pn)2(Cl)(L)2+(where L = RC6H4NH2, R = m-OMe, p-F and H) in water-1,4-dioxane mixtures (Diox = 0, 5, 10, 15, 20, 25, and 30% (v/v)) were also derived for all the complexes in presence of added iodide ion, in which CoIII was reduced via [CoIII(pn)2(Cl)(L)2+….. I-] ion-pair formation. The photoinduced state is ion-pair charge transfer transition state and the quantum efficiency is solvent reliant and they are non-reactive. That is, change in ΦCo(II) is dependable with observed increase in xDiox of the mixed solvent medium. Correlation analysis using empirical parameters εr, Y, ET N and DNN provides a model to understand the solvent medium participation and interaction. This work gains an insight into the role of aqueous-organic solvent medium in CoIII(pn)2(Cl)(L)2+ photoreduction, which may be of great significance in developing novel approaches in the field of high performance catalysis
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity