Health & Environmental Research Online (HERO)


Print Feedback Export to File
9776164 
Journal Article 
The heme prosthetic group of lactoperoxidase. Structural characteristics of heme l and heme l-peptides 
Rae, TD; Goff, HM 
1998 
Yes 
Journal of Biological Chemistry
ISSN: 0021-9258
EISSN: 1083-351X 
273 
43 
27968-27977 
English 
The heme prosthetic group from the bovine milk enzyme lactoperoxidase (LPO), termed heme l, is isolated through an approach that combines proteolytic hydrolysis and reverse-phase high performance liquid chromatographic separation of the resulting digest. Application of different proteases yields either a peptide-bound heme (with trypsin and chymotrypsin) or a peptide-free heme (with proteinase K). Both heme l and heme l-peptide species were investigated by paramagnetic 1H NMR spectroscopy, electrospray mass spectrometry, and peptide sequence analysis. Paramagnetic 1H NMR experiments on the low spin bis(cyano)-Fe(III)heme l complex conclusively define the heme l structure as a 1,5-bis(hydroxymethyl) derivative of heme b. The electrospray mass spectrum of heme l confirms the two-site hydroxyl functionalization on this heme. Paramagnetic 1H NMR spectra of the high spin bis(dimethyl sulfoxide)-Fe(III) complexes of the isolated heme species provide information regarding peptide content. Sequence analyses of peptides released from two heme l-peptide species by base hydrolysis suggest that heme-protein ester linkages in lactoperoxidase occur between the two hydroxyl groups of heme l and the carboxylic side chains of glutamate 275 and aspartate 125. These results confirm the earlier reported structural proposal (Rae, T. D., and Goff, H. M. (1996) J. Am. Chem. Soc. 118, 2103-2104).