Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
9795195
Reference Type
Journal Article
Title
Hexafluoroisopropanol-Mediated Intramolecular Ring-Opening Cyclization of Indolyl-N-Tethered Epoxides: Tether-Length-Controlled Synthesis of 1,7- and 1,2-Fused Indoles
Author(s)
Das, AJ; Chouhan, R; Das, SK
Year
2021
Is Peer Reviewed?
Yes
Journal
Journal of Organic Chemistry
ISSN:
0022-3263
EISSN:
1520-6904
Volume
86
Issue
12
Page Numbers
8274-8285
Language
English
PMID
34061532
DOI
10.1021/acs.joc.1c00721
Abstract
Despite having the capability to construct benzo-fused heterocycles in complete atom economy and high chemo-, regio-, enantio-, and diastereoselectivities, intramolecular Friedel-Crafts epoxide arene cyclization (IFCEAC) remains underutilized in organic synthesis. The wide adaptation of this powerful Csp2-Csp3 bond-forming reaction, therefore, requires a broad understanding of the substrate scope to better impact heterocycle synthesis. Along this line, we investigated the applicability of IFCEAC for the synthesis of 1,7- and 1,2-fused indoles. In this article, we report the results of our systematic investigation into the scope and limitations of the first examples of the hexafluoro-2-propanol (HFIP)-mediated IFCEAC of readily accessible indolyl-N-tethered epoxides. We observed that the nature and position of the indole and epoxide substituents and the tether length separating these two reacting moieties have strong effects on the cyclization. This mild and transition-metal-free protocol delivered pyrrolo[3,2,1-ij]quinolin-5-ols in moderate to good yields from substrates bearing both a methylene linker that connects the indole and epoxide moieties and an electron-rich indole carbocyclic ring. Notably, the reactions required the presence of a π-activating aryl substituent on the reacting epoxide carbon atom. Interestingly, replacing the methylene tether with an ethylene unit resulted in regioswitching, which delivered the corresponding tetrahydropyrido[1,2-a]indol-8-ols in good to high yields. We could also successfully extend this methodology to pyrrolyl-N-tethered epoxides for a very high-yielding synthesis of tetrahydroindolizin-7-ols.
Tags
PFAS
•
Expanded PFAS SEM (formerly PFAS 430)
Litsearch Update: November 2021
PubMed
Not prioritized for screening
2H-Perfluoro-2-propanol
•
PFAS Universe
Data Source
Pubmed
2H-Perfluoro-2-propanol
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity