Health & Environmental Research Online (HERO)


Print Feedback Export to File
9928536 
Journal Article 
Dietary phosphorus deprivation induces 25-hydroxyvitamin D(3) 1alpha-hydroxylase gene expression 
Yoshida, T; Yoshida, N; Monkawa, T; Hayashi, M; Saruta, T 
2001 
Yes 
Endocrinology
ISSN: 0013-7227
EISSN: 1945-7170 
142 
1720-1726 
English 
Dietary phosphorus deprivation causes hypophosphatemia and an increase in serum 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] concentrations. To determine the molecular mechanisms of this regulation, the effects of dietary phosphorus deprivation and hypophysectomy on 25-hydroxyvitamin D(3) 1alpha-hydroxylase (1alpha-hydroxylase) protein and messenger RNA (mRNA) expression were examined in rats. A low phosphorus diet (LPD) for 4 days resulted in hypophosphatemia and an increase in serum 1,25-(OH)(2)D(3) levels. This increase was caused by the induction of 1alpha-hydroxylase protein and mRNA expression (4- and 10-fold increases, respectively). Administration of the LPD or normal phosphorus diet to hypophysectomized (HPX) rats resulted in hypophosphatemia and suppression of 1alpha-hydroxylase gene expression, indicating that hypophosphatemia itself is not sufficient to induce 1alpha-hydroxylase mRNA expression. Administration of GH to HPX rats fed LPD could partially restore 1alpha-hydroxylase mRNA expression, whereas supplementation with insulin-like growth factor I, T(3), estrogen, or corticosterone had no effect. We also examined Phex gene expression in the bone, because the clinical features of X-linked hypophosphatemia resemble those of HPX rats. Phex mRNA expression, however, was not altered in HPX rats. In conclusion, we demonstrated that the increase in serum 1,25-(OH)(2)D(3) levels caused by dietary phosphorus deprivation is due to the induction of 1alpha-hydroxylase mRNA expression, and this increase is mediated in part by a GH-dependent mechanism.