Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
9931601
Reference Type
Journal Article
Title
Quinidine as a probe for the role of p-glycoprotein in the intestinal absorption and clinical effects of fentanyl
Author(s)
Kharasch, ED; Hoffer, C; Altuntas, TG; Whittington, D
Year
2004
Is Peer Reviewed?
Yes
Journal
Journal of Clinical Pharmacology
ISSN:
0091-2700
EISSN:
1552-4604
Volume
44
Issue
3
Page Numbers
224-233
Language
English
PMID
14973303
DOI
10.1177/0091270003262075
Abstract
The mechanism of individual variability in the fentanyl dose-effect relationship is unknown. The efflux pump P-glycoprotein (P-gp) regulates brain access and intestinal absorption of numerous drugs. Evidence exists that fentanyl is a P-gp substrate in vitro, and P-gp affects fentanyl analgesia in animals. However, the role of P-gp in human fentanyl disposition and clinical effects is unknown. This investigation tested the hypothesis that plasma concentrations and clinical effects of oral and intravenous fentanyl are greater after inhibition of intestinal and brain P-gp, using the P-gp inhibitor quinidine as an in vivo probe. Two randomized, double-blind, placebo-controlled, balanced, two-period crossover studies were conducted in normal healthy volunteers (6 males and 6 females) after obtaining informed consent. Pupil diameters and/or plasma concentrations of fentanyl and norfentanyl were evaluated after oral or intravenous fentanyl (2.5 microg/kg), dosed 1 hour after oral quinidine (600 mg) or placebo. Quinidine did not alter the magnitude or time to maximum miosis, time-specific pupil diameter, or subjective self-assessments after intravenous fentanyl but did increase the area under the curve (AUC) of miosis versus time (13.6 +/- 5.3 vs. 8.7 +/- 5.0 mm*h, p< 0.05) and decreased the effect of elimination (k(el) 0.35 +/- 0.16 vs. 0.52 +/- 0.24 h(-1), p < 0.05). Quinidine increased oral fentanyl plasma C(max) (0.55 +/- 0.19 vs. 0.21 +/- 0.1 ng/mL) and AUC (1.9 +/- 0.5 vs. 0.7 +/- 0.3 ng*h*mL(-1)) (both p < 0.05) but had no effect on apparent elimination. Plasma norfentanyl/fentanyl AUC ratios were not diminished by quinidine. Quinidine significantly increased maximum miosis after oral fentanyl (3.4 +/- 1.3 vs. 2.3 +/- 1.3 mm, p< 0.05), commensurate with increases in plasma concentrations, but concentration-effect relationships and the rate constant for the transfer between plasma and effect compartment (k(e0)) (1.9 +/- 1.0 vs. 3.6 +/- 2.6 h(-1)) were not significantly different. Quinidine increased oral fentanyl plasma concentrations, suggesting that intestinal P-gp or some other quinidine-sensitive transporter affects the absorption, bioavailability, and hence clinical effects of oral fentanyl. Quinidine had less effect on fentanyl pharmacodynamics, suggesting that if quinidine is an effective inhibitor of brain P-gp, then P-gp appears to have less effect on brain access of fentanyl.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity