Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1018412
Reference Type
Journal Article
Title
Molecular evolution of an arsenate detoxification pathway by DNA shuffling
Author(s)
Crameri, A; Dawes, G; Rodriguez, E; Silver, S; Stemmer, WP
Year
1997
Is Peer Reviewed?
1
Journal
Nature Biotechnology
ISSN:
1087-0156
EISSN:
1546-1696
Volume
15
Issue
5
Page Numbers
436-438
Language
English
PMID
9131621
DOI
10.1038/nbt0597-436
Web of Science Id
WOS:A1997WX23700026
Abstract
Functional evolution of an arsenic resistance operon has been accomplished by DNA shuffling, involving multiple rounds of in vitro recombination and mutation of a pool of related sequences, followed by selection for increased resistance in vivo. Homologous recombination is achieved by random fragmentation of the PCR templates and reassembly by primerless PCR. Plasmid-determined arsenate resistance from plasmid pl258 encoded by genes arsR, arsB, and arsC was evolved in Escherichia coli. Three rounds of shuffling and selection resulted in cells that grew in up to 0.5 M arsenate, a 40-fold increase in resistance. Whereas the native plasmid remained episomal, the evolved operon reproducibly integrated into the bacterial chromosome. In the absence of shuffling, no increase in resistance was observed after four selection cycles, and the control plasmid remained episomal. The integrated ars operon had 13 mutations. Ten mutations were located in arsB, encoding the arsenite membrane pump, resulting in a fourfold to sixfold increase in arsenite resistance. While arsC, the arsenate reductase gene, contained no mutations, its expression level was increased, and the rate of arsenate reduction was increased 12-fold. These results show that DNA shuffling can improve the function of pathways by complex and unexpected mutational mechanisms that may be activated by point mutation. These mechanisms may be difficult to explain and are likely to be overlooked by rational design.
Keywords
combinatorial chemistry; sexual PCR; molecular libraries; metabolic engineering
Tags
•
Arsenic (Inorganic)
1. Literature
PubMed
Toxline, TSCATS, & DART
Web of Science
•
Inorganic Arsenic (7440-38-2) [Final 2025]
1. Initial Lit Search
PubMed
WOS
ToxNet
4. Considered through Oct 2015
6. Cluster Filter through Oct 2015
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity