Health & Environmental Research Online (HERO)


Print Feedback Export to File
1030567 
Journal Article 
Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange 
Ordóñez, E; Van Belle, K; Roos, G; De Galan, S; Letek, M; Gil, JA; Wyns, L; Mateos, LM; Messens, J 
2009 
Yes 
Journal of Biological Chemistry
ISSN: 0021-9258
EISSN: 1083-351X 
284 
22 
15107-15116 
English 
We identified the first enzymes that use mycothiol and mycoredoxin in a thiol/disulfide redox cascade. The enzymes are two arsenate reductases from Corynebacterium glutamicum (Cg_ArsC1 and Cg_ArsC2), which play a key role in the defense against arsenate. In vivo knockouts showed that the genes for Cg_ArsC1 and Cg_ArsC2 and those of the enzymes of the mycothiol biosynthesis pathway confer arsenate resistance. With steady-state kinetics, arsenite analysis, and theoretical reactivity analysis, we unraveled the catalytic mechanism for the reduction of arsenate to arsenite in C. glutamicum. The active site thiolate in Cg_ArsCs facilitates adduct formation between arsenate and mycothiol. Mycoredoxin, a redox enzyme for which the function was never shown before, reduces the thiol-arseno bond and forms arsenite and a mycothiol-mycoredoxin mixed disulfide. A second molecule of mycothiol recycles mycoredoxin and forms mycothione that, in its turn, is reduced by the NADPH-dependent mycothione reductase. Cg_ArsCs show a low specificity constant of approximately 5 m(-1) s(-1), typically for a thiol/disulfide cascade with nucleophiles on three different molecules. With the in vitro reconstitution of this novel electron transfer pathway, we have paved the way for the study of redox mechanisms in actinobacteria. 
• Arsenic (Inorganic)
     1. Literature
          PubMed
          Toxline, TSCATS, & DART
          Web of Science
• Inorganic Arsenic (7440-38-2) [Final 2025]
     1. Initial Lit Search
          PubMed
          WOS
          ToxNet
     4. Considered through Oct 2015
     6. Cluster Filter through Oct 2015