Health & Environmental Research Online (HERO)


Print Feedback Export to File
1070449 
Journal Article 
Fractionation of Sb and As in soil and sludge samples using different continuous-flow extraction techniques 
Savonina, EY; Fedotov, PS; Wennrich, R 
2012 
Yes 
Analytical and Bioanalytical Chemistry
ISSN: 1618-2642
EISSN: 1618-2650 
403 
1441-1449 
English 
The fractionation of Sb and As in soil and sludge samples had been comparably studied using two continuous-flow systems: a microcolumn (MC) and a rotating coiled column (RCC). The leachants were applied in correspondence with a five-step sequential extraction scheme addressing water-soluble, non-specifically sorbed, specifically sorbed, and bound to amorphous and crystalline Fe/Al oxide fractions of Sb and As. Inductively coupled plasma atomic emission spectroscopy was applied to determine antimony, arsenic, and major elements in the effluent and in the residual fractions after their digestion. Resemblances and discrepancies of the two methods were evaluated by the fractionation of Sb and As in forest soil, river sludge, and dumped waste (soil) samples. For the forest soil sample, which is very poor in organic matter, RCC and MC extractions yielded similar quantitative values of As and Sb contents in individual leachable fractions. However, for the river sludge sample with a moderate concentration of C (org) (3.3 %), the results obtained by both continuous-flow methods are in satisfactory agreement. RCC extraction enabled water-soluble and non-specifically sorbed As fractions to be recovered, whereas after MC leaching, these environmentally relevant forms of As were not detected. For the soil rich in organic matter (C (org) = 11.5 %), the discrepancy between the data of RCC and MC fractionations is significant. RCC extraction provides about six times higher recoveries of As and Sb bound to amorphous Fe/Al oxides. More efficient leaching of As and Sb in RCC may be attributed to the migration of organic-rich particles with low density inside the column that might enhance the mixing of the solid and liquid phases. 
Soil; Dynamic fractionation; Rotating coiled column; Microcolumn; Sequential extraction; Arsenic; Antimony 
• Arsenic (Inorganic)
     1. Literature
          PubMed
          Toxline, TSCATS, & DART
• Inorganic Arsenic (7440-38-2) [Final 2025]
     1. Initial Lit Search
          PubMed
          ToxNet
     4. Considered through Oct 2015
     6. Cluster Filter through Oct 2015