Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1165920
Reference Type
Journal Article
Title
Thermochemical methane reforming using WO3 as an oxidant below 1173 K by a solar furnace simulator
Author(s)
Shimizu, T; Shimizu, K; Kitayama, Y; Kodama, T
Year
2001
Is Peer Reviewed?
1
Journal
Solar Energy
ISSN:
0038-092X
Publisher
Elsevier
Volume
71
Issue
5
Page Numbers
315-324
DOI
10.1016/S0038-092X(01)00058-5
Web of Science Id
WOS:000171425400004
URL
https://linkinghub.elsevier.com/retrieve/pii/S0038092X01000585
Exit
Abstract
Thermochemical methane reforming by a reactive redox system of WO, was demonstrated under direct irradiation of the metal oxide by a concentrated, solar-simulated Xe-lamp beam below 1173 K, for the purpose of converting solar high-temperature heat to chemical fuels. In the proposed cycling redox process, the metal oxide is expected to react with methane as an oxidant to produce syngas with a H-2/CO ratio of two, which is suitable for the production of methanol, and the reduced metal oxide which is oxidized back with steam in a separate step to generate hydrogen uncontaminated with carbon oxide. The ZrO2-supported WO3 gave about 45% of CO yield and 55% of H-2 yield with a H-2/CO ratio of about 2.4 in a temperature range of 1080-1160 K at a W/F ratio of 0.167 g min Ncm(-3) (W is the weight of WO3 phase and F is the flow rate of CHO. The activity data under the solar simulation were compared to those for the WO3/ZrO2 heated by irradiation of an infrared light. This comparison indicated that the CO selectivity was much improved to 76-85% in the solar-simulated methane reforming, probably by photochemical effect due to WO, phase. The main solid product of WO2 in the reduced WO3/ZrO2 was reoxidized to WO3 with steam to generate hydrogen below 1173 K. (C) 2001 Elsevier Science Ltd. All rights reserved.
Tags
IRIS
•
Methanol (Non-Cancer)
Search 2012
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity