Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1346322
Reference Type
Journal Article
Title
Characterization of SPAK and OSR1, regulatory kinases of the Na-K-2Cl cotransporter
Author(s)
Gagnon, KBE; England, R; Delpire, E
Year
2006
Is Peer Reviewed?
1
Journal
Molecular and Cellular Biology
ISSN:
0270-7306
EISSN:
1098-5549
Volume
26
Issue
2
Page Numbers
689-698
Language
English
PMID
16382158
DOI
10.1128/MCB.26.2.689-698.2006
Web of Science Id
WOS:000234676100027
Abstract
Our recent studies demonstrate that SPAK (Ste20p-related Proline Alanine-rich Kinase), in combination with WNK4 [With No lysine (K) kinase], phosphorylates and stimulates the Na-K-2Cl cotransporter (NKCC1), whereas catalytically inactive SPAK (K104R) fails to activate the cotransporter. The catalytic domain of SPAK contains an activation loop between the well-conserved DFG and APE motifs. We speculated that four threonine residues (T231, T236, T243, and T247) in the activation loop might be sites of phosphorylation and kinase activation; therefore, we mutated each residue into an alanine. In this report, we demonstrate that coexpression of SPAK (T243A) or SPAK (T247A) with WNK4 not only prevented, but robustly inhibited, cotransporter activity in NKCC1-injected Xenopus laevis oocytes. These activation loop mutations produced an effect similar to that of the SPAK (K104R) mutant. In vitro phosphorylation experiments demonstrate that both intramolecular autophosphorylation of SPAK and phosphorylation of NKCC1 are significantly stronger in the presence of Mn2+ rather than Mg2+. We also show that SPAK activity is markedly inhibited by staurosporine and K252a, partially inhibited by N-ethylmaleimide and diamide, and unaffected by arsenite. OSR1, a kinase closely related to SPAK, exhibited similar kinase properties and similar functional activation of NKCC1 when coexpressed with WNK4.
Tags
IRIS
•
Arsenic (Inorganic)
1. Literature
PubMed
Web of Science
•
Inorganic Arsenic (7440-38-2) [Final 2025]
1. Initial Lit Search
PubMed
WOS
4. Considered through Oct 2015
6. Cluster Filter through Oct 2015
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity