Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1425688
Reference Type
Technical Report
Title
System Losses Study-FIT (Fuel-cycle Integration and Tradeoffs)
Author(s)
Soelberg, NR; Bays, SE; Cherry, RS; Teague, MC; Teske, GM
Year
2010
Report Number
NTIS/10740123
Volume
GRA and I
Issue
GRA and I
Abstract
This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was the number of nines how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum losses of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of losses itself changed from the loss of TRU into waste to a generic definition that a loss is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R and D needs, and gaining new insights. The FIT model has been a forcing function, helping the team in this endeavor. Models dont like TBD as an input, forcing us to make assumptions and see if they matter. A major addition in FY 2010 was exploratory analysis of modified open fuel cycles, employing minimum fuel treatment as opposed to full aqueous or electrochemical separation treatment. This increased complexity in our analysis and analytical tool development because equilibrium conditions do not appear sustainable in minimum fuel treatment cases, as was assumed in FY 2009 work with conventional aqueous and electrochemical separation. It is no longer reasonable to assume an equilibrium situation exists in all cases.
Keywords
Nuclear fuel cycle
;
*Advanced fuel cycles
;
*Chemical losses
;
Fuel recycling
;
Nuclear fuel
;
Fission products
;
Nuclear energy
;
Uranium 228
;
Waste management
;
Yucca Mountain
;
Impurities
Tags
IRIS
•
Uranium
Toxline
Merged reference set
Secondary Refinement
Retained for manual screening
Excluded:
Chemical treatment/ disposal/remediation
Uranium Literature Search Update 3/2017
Toxnet
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity