Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1517991
Reference Type
Book/Book Chapter
Title
Metabolism of the carcinogen chromate by cellular constituents
Author(s)
Connett, PH; Wetterhahn, KE
Year
1983
Publisher
Springer-Verlag
Location
Berlin, Germany
Book Title
Inorganic elements in biochemistry
Page Numbers
93-124
DOI
10.1007/BFb0111319
Abstract
The redox chemistry of chromium(VI) is discussed with respect to the cellular metabolism of the carcinogen chromate in vivo. Possible sites for cellular reduction of chromium(VI) to chromium(III) are considered. The reactions of amino acids, ascorbic acid, carboxylic acids, thiol-containing mole-cules and other small molecules with chromate under physiological conditions are presented. In general only ascorbate and those molecules containing sulfhydryl groups are capable of easily reducing chromate at pH 7.4. Thus, in the cytoplasm, glutathione, cysteine and ascorbate are likely candidates to react with chromate. While most proteins are unreactive toward chromate, certain redox proteins are active in reducing chromate. The heme proteins hemoglobin and cytochrome P-450 possess chromate-reductase activity, whereas cytochrome c and myoglobin are inactive. The NADPH-dependent flavoenzymes glutathione reductase and NADPH-cytochrome P-450 reductase also possess chromate-reductase activity. However, the NAD(P)H enzymes, isocitrate dehydrogenase, glutamate dehyrogenase and malate dehydrogenase do not reduce chromate. Both microsomes and mitochondria possess chromate-reductase activity. The microsomal activity is accounted for by the NADPH-cytochrome P-450 reductase/cytochrome P-450 system. The enzyme(s) responsible for the mitochondrial reduction of chromate have not been identified. Chromium(VI) and its metabolite chromium(III) inhibit the normal activities of enzymes which bind chromium(III) or reduce chromate. The metabolism of chromate involves the generation of reactive intermediates which ultimately bind to cellular constituents and damage their function in the cell.
Series
Structure and Bonding, 54
ISBN
978-3-540-12542-6
Tags
IRIS
•
Chromium VI
Considered
Potentially Relevant Supplemental Material
Non-Peer Reviewed
Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity