Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
1607074
Reference Type
Journal Article
Title
Likely seeding of cirrus clouds by stratospheric Kasatochi volcanic aerosol particles near a mid-latitude tropopause fold
Author(s)
Campbell, , JR; Welton, EJ; Krotkov, NA; Yang, Kai; Stewart, SA; Fromm, MD
Year
2012
Is Peer Reviewed?
1
Journal
Atmospheric Environment
ISSN:
1352-2310
EISSN:
1873-2844
Volume
46
Page Numbers
441-448
DOI
10.1016/j.atmosenv.2011.09.027
Web of Science Id
WOS:000298763200047
Abstract
Following the explosive 7-8 August 2008 Mt. Kasatochi volcanic eruption in southwestern Alaska, a segment of the dispersing stratospheric aerosol layer was profiled beginning 16 August in continuous ground-based lidar measurements over the Mid-Atlantic coast of the eastern United States. On 17-18 August, the layer was displaced downward into the upper troposphere through turbulent mixing near a tropopause fold. Cirrus clouds and ice crystal fallstreaks were subsequently observed, having formed within the entrained layer. The likely seeding of these clouds by Kasatochi aerosol particles is discussed. Cloud formation is hypothesized as resulting from either preferential homogenous freezing of relatively large sulfate-based solution droplets deliquesced after mixing into the moist upper troposphere or through heterogeneous droplet activation by volcanic ash. Satellite-borne spectrometer measurements illustrate the evolution of elevated Kasatochi SO2 mass concentrations regionally and the spatial extent of the cirrus cloud band induced by likely particle seeding. Satellite-borne polarization lidar observations confirm ice crystal presence within the clouds. Geostationary satellite-based water vapor channel imagery depicts strong regional subsidence, symptomatic of tropopause folding, along a deepening trough in the sub-tropical westerlies. Regional radiosonde profiling confirms both the position of the fold and depth of upper-tropospheric subsidence. These data represent the first unambiguous observations of likely cloud seeding by stratospheric volcanic aerosol particles after mixing back into the upper troposphere. Published by Elsevier Ltd.
Keywords
Aerosol indirect effect; Volcanic aerosol; Cloud seeding; Cirrus clouds; UTLS processes; Lidar
Tags
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Atmospheric Science - Background Ozone
Title-Abstract Screening (SWIFT-AS) - Excluded
Manually Excluded
Other
•
Alaska Waste and Health Impacts
LitSearch October 2021
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity