Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2548210
Reference Type
Journal Article
Title
AFM-porosimetry: Density and pore volume measurements of particulate materials
Author(s)
Sorensen, MH; Valle-Delgado, JJ; Corkery, RW; Rutland, MW; Alberius, PC
Year
2008
Is Peer Reviewed?
1
Journal
Langmuir
ISSN:
0743-7463
EISSN:
1520-5827
Volume
24
Issue
13
Page Numbers
7024-7030
Language
English
PMID
18503284
DOI
10.1021/la800260h
Web of Science Id
WOS:000257101100086
Abstract
We introduced the novel technique of AFM-porosimetry and applied it to measure the total pore volume of porous particles with a spherical geometry. The methodology is based on using an atomic force microscope as a balance to measure masses of individual particles. Several particles within the same batch were measured, and by plotting particle mass versus particle volume, the bulk density of the sample can be extracted from the slope of the linear fit. The pore volume is then calculated from the densities of the bulk and matrix materials, respectively. In contrast to nitrogen sorption and mercury porosimetry, this method is capable of measuring the total pore volume regardless of pore size distribution and pore connectivity. In this study, three porous samples were investigated by AFM-porosimetry: one ordered mesoporous sample and two disordered foam structures. All samples were based on a matrix of amorphous silica templated by a block copolymer, Pluronic F127, swollen to various degrees with poly(propylene glycol). In addition, the density of silica spheres without a template was measured by two independent techniques: AFM and the Archimedes principle.
Tags
IRIS
•
Methylmercury
ADME Search: Jan 1990 - Nov 2018
Results with mercury
PubMed
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity