Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
2839965
Reference Type
Journal Article
Title
An experimental investigation into the atmospheric degradation of piperazine
Author(s)
White, S; Angove, D; Azzi, M; Tibbett, A; Campbell, Ian; Patterson, M
Year
2015
Is Peer Reviewed?
1
Journal
Atmospheric Environment
ISSN:
1352-2310
EISSN:
1873-2844
Volume
108
Page Numbers
133-139
DOI
10.1016/j.atmosenv.2015.02.063
Web of Science Id
WOS:000351808800015
Abstract
The atmospheric degradation of piperazine was investigated using an indoor smog chamber. Experiments were carried out in the presence of nitrogen oxides (NOx), ozone or nitric acid. Piperazine reacted rapidly under all evaluated conditions: irradiated in the presence of NOx and with ozone and nitric acid in the dark. Gas phase products from the oxidation of piperazine were identified by infrared spectroscopy, DNPH cartridges followed by HPLC analysis, and by sampling chamber gas through Tenax sorbent material followed by analysis using thermal desorption GC-ITMS (gas chromatography ion trap mass spectrometry).
Eight compounds were positively identified, with a further nine compounds tentatively identified using GC-MS based on molecular weight and mass spectra. Ammonia formation was observed from piperazine oxidation, and its formation was from the subsequent reactions of photooxidation products of piperazine rather than directly from the reaction of piperazine. The nitrosamine and nitramine expected from piperazine, N-nitrosopiperazine, and N-nitropiperazine, were both identified and confirmed using (NO)-N-15, with a tentative maximum yield of nitrosamine of less than 5% observed.
Aerosol yields, relative to total piperazine reacted not including that which absorbed to the walls, were considerably high but were not able to be quantified absolutely due to unusual behaviour of the scanning mobility particle sizer instrument to aerosol containing amines. The reaction of piperazine with gas phase nitric acid gave rise to immediate formation of aerosol. (C) 2015 Elsevier Ltd. All rights reserved.
Keywords
Piperazine; PCC emissions; Nitrosamine; Nitramine
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Excluded
Keyword Search Excluded
•
LitSearch-NOx (2024)
Keyword Search
Atmospheric
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity