Health & Environmental Research Online (HERO)


Print Feedback Export to File
3039551 
Journal Article 
Dermal penetration of propylene glycols: Measured absorption across human abdominal skin in vitro and comparison with a QSAR model 
Fasano, WJ; ten Berge, W; Banton, MI; Heneweer, M; Moore, NP 
2011 
Toxicology In Vitro
ISSN: 0887-2333
EISSN: 1879-3177 
25 
1664-1670 
English 
The dermal penetration of undiluted monopropylene glycol (MPG) and dipropylene glycol (DPG) has been measured in vitro using human abdominal skin under conditions of infinite dose application, and the results compared with predictions from the SKINPERM QSAR model (ten Berge, 2009). The measured steady-state penetration rates (J(ss)) for MPG and DPG were 97.6 and 39.3 mu g/cm(2)/h, respectively, and the permeability coefficients (K(p)) were 9.48 x 10(-5) cm/h for MPG and 3.85 x 10(-5) cm/h for DPG. In comparison, the SKINPERM model slightly over-predicted J(ss) and K(p) for MPG and DPG by between 2.6- and 5.1-fold, respectively. The model predictions of 254 mu g/cm(2)/h and 24.6 x 10(-5) cm/h for MPG, and 202 mu g/cm(2)/h and 19.8 x 10(-5) cm/h for DPG were in fairly good agreement with the measured values. Further, the model predicted a J(ss) of 101 mu g/cm(2)/h and a Kp of 9.9 x 10(-5) cm/h for the homologue tripropylene glycol. Assuming that the measured J(ss) was the same under conditions of finite dose application (taken to be 10 mu L/cm(2)) and was maintained over a 24-h period (both conservative assumptions), the relative dermal absorption of the applied dose was estimated to be 23% (0.96%/h) for MPG and 9% (0.39%/h) for DPG. However, the extrapolation for MPG may be further overestimated due to possible residence in the stratum corneum under infinite conditions of exposure that would not be applicable to a finite loading dose. (C) 2011 Elsevier Ltd. All rights reserved. 
Monopropylene glycol; Dipropylene glycol; Tripropylene glycol; Skin absorption; SKINPERM; In vitro 
OPPT
• Glycols
     Literature Search
          Human Health
               PubMed (private)
               WOS (private)
          Fate
               WOS (private)
          Environmental Hazard
               WOS (private)
               Proquest (private)
     Full-text Review
          Human Health
     Data Evaluation
          Human Health