Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3251678
Reference Type
Journal Article
Title
Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion
Author(s)
Surawski, NC; Sullivan, AL; Meyer, CP; Roxburgh, SH; Polglase, PJ
Year
2015
Is Peer Reviewed?
Yes
Journal
Atmospheric Chemistry and Physics
ISSN:
1680-7316
EISSN:
1680-7324
Publisher
COPERNICUS GESELLSCHAFT MBH
Location
GOTTINGEN
Volume
15
Issue
9
Page Numbers
5259-5273
Language
English
DOI
10.5194/acp-15-5259-2015
Web of Science Id
WOS:000355289100018
Abstract
Free-burning experimental fires were conducted in a wind tunnel to explore the role of ignition type and thus fire spread mode on the resulting emissions profile from combustion of fine (< 6 mm in diameter) Eucalyptus litter fuels. Fires were burnt spreading with the wind (heading fire), perpendicular to the wind (flanking fire) and against the wind (backing fire). Greenhouse gas compounds (i.e. CO2, CH4 and N2O) and CO were quantified using off-axis integrated-cavity-output spectroscopy. Emissions factors calculated using a carbon mass balance technique (along with statistical testing) showed that most of the carbon was emitted as CO2, with heading fires emitting 17% more CO2 than flanking and 9.5% more CO2 than backing fires, and about twice as much CO as flanking and backing fires. Heading fires had less than half as much carbon remaining in combustion residues. Statistically significant differences in CH4 and N2O emissions factors were not found with respect to fire spread mode. Emissions factors calculated per unit of dry fuel consumed showed that combustion phase (i.e. flaming or smouldering) had a statistically significant impact, with CO and N2O emissions increasing during smouldering combustion and CO2 emissions decreasing. Findings on the equivalence of different emissions factor reporting methods are discussed along with the impact of our results for emissions accounting and potential sampling biases associated with our work. The primary implication of this study is that prescribed fire practices could be modified to mitigate greenhouse gas emissions from forests by judicial use of ignition methods to induce flanking and backing fires over heading fires.
Tags
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Atmospheric Science - Background Ozone
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
•
LitSearch-NOx (2024)
Keyword Search
Exposure
Confounding
WoS
TIAB Screening
Atmospheric
Round 1
Include
Round 2
Sources
Include
•
WFLC - CAIF Report
Chapter 5
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity