Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3269954
Reference Type
Journal Article
Title
Using beryllium-7 to assess cross-tropopause transport in global models
Author(s)
Liu, H; Considine, DB; Horowitz, LW; Crawford, JH; Rodriguez, JM; Strahan, SE; Damon, MR; Steenrod, SD; Xu, X; Kouatchou, J; Carouge, C; Yantosca, RM
Year
2016
Is Peer Reviewed?
Yes
Journal
Atmospheric Chemistry and Physics
ISSN:
1680-7316
EISSN:
1680-7324
Publisher
COPERNICUS GESELLSCHAFT MBH
Location
GOTTINGEN
Volume
16
Issue
7
Page Numbers
4641-4659
DOI
10.5194/acp-16-4641-2016
Web of Science Id
WOS:000374703000026
Abstract
We use the Global Modeling Initiative (GMI) modeling framework to assess the utility of cosmogenic beryllium-7 (Be-7), a natural aerosol tracer, for evaluating cross-tropopause transport in global models. The GMI chemical transport model (CTM) was used to simulate atmospheric Be-7 distributions using four different meteorological data sets (GEOS1-STRAT DAS, GISS II' GCM, fvGCM, and GEOS4-DAS), featuring significantly different stratosphere-troposphere exchange (STE) characteristics. The simulations were compared with the upper troposphere and/or lower stratosphere (UT/LS) Be-7 climatology constructed from similar to aEuro parts per thousand aEuro-25aEuro-years of aircraft and balloon data, as well as climatological records of surface concentrations and deposition fluxes. Comparison of the fraction of surface air of stratospheric origin estimated from the Be-7 simulations with observationally derived estimates indicates excessive cross-tropopause transport at mid-latitudes in simulations using GEOS1-STRAT and at high latitudes using GISS II' meteorological data. These simulations also overestimate Be-7 deposition fluxes at mid-latitudes (GEOS1-STRAT) and at high latitudes (GISS II'), respectively. We show that excessive cross-tropopause transport of Be-7 corresponds to overestimated stratospheric contribution to tropospheric ozone. Our perspectives on STE in these meteorological fields based on Be-7 simulations are consistent with previous modeling studies of tropospheric ozone using the same meteorological fields. We conclude that the observational constraints for Be-7 and observed Be-7 total deposition fluxes can be used routinely as a first-order assessment of cross-tropopause transport in global models.
Tags
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Atmospheric Science - Background Ozone
Climate
Title-Abstract Screening (SWIFT-AS) - Included
Title-Abstract Screening (SWIFT-AS) - Included
Full-Text Screening Excluded
Full-Text Screening Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity