Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3455355
Reference Type
Journal Article
Title
Particulate matter exposure induces the autophagy of macrophages via oxidative stress-mediated PI3K/AKT/mTOR pathway
Author(s)
Su, R; Jin, X; Zhang, W; Li, Z; Liu, X; Ren, J
Year
2017
Is Peer Reviewed?
Yes
Journal
Chemosphere
ISSN:
0045-6535
EISSN:
1879-1298
Volume
167
Page Numbers
444-453
Language
English
PMID
27750168
DOI
10.1016/j.chemosphere.2016.10.024
Web of Science Id
WOS:000388543400052
Abstract
Many epidemiological investigations have consistently demonstrated the immunotoxicity of fine particulate matter (PM2.5), but the underlying molecular mechanism remains unclear and needs to be elucidated. In this work, the immune cells, including pulmonary macrophages of SD rats and Raw264.7 cells, were applied to further investigate the effect of PM2.5 on cell autophagy of macrophages, thus clarified the possible molecular mechanism of immunotoxicity caused by PM2.5. SD rats were exposed to summer (0.2, 0.6, 1.5 mg kg(-1) b.w.) and winter (0.3, 1.5, 2.7 mg kg(-1) b.w.) PM2.5 adopting the intratracheal instillation method. The exposure was performed one time every 3 days and continued for 2 months. The data showed that PM2.5 exposure decreased numbers of immune cells in pulmonary macrophages of SD rats. In addition, PM2.5 could induce the cell autophagy through the increased LC3 and decreased p62 mRNA and protein levels of pulmonary macrophages in SD rats and Raw264.7 cells in a concentration-dependent manner. Strikingly, PM2.5-induced oxidative stress was observed. However, NAC supplement (the ROS inhibitor) significantly reversed PM2.5-caused effects. Additionally, the PI3K/AKT/mTOR pathway was activated in PM2.5-treated cells and NAC had an important inhibitory effect. These results demonstrated that PM2.5 exposures induced autophagy of pulmonary macrophages via the oxidative stress-mediated PI3K/AKT/mTOR pathway, which may contribute to explain the molecular mechanism of immunotoxicity caused by PM2.5 and provide the theoretical foundation for environment toxicology of PM2.5.
Tags
NAAQS
•
ISA-PM (2019)
Considered
•
Litsearch – PM ISA Supplement 2021
Pubmed iCite citation search (April 2021 BR)
PM2.5 Cardiovascular and Mortality Epi Search
Results
Merged search results (location and date exclusion applied)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity