Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3603076
Reference Type
Journal Article
Title
Development of an ex vivo human-porcine respiratory model for preclinical studies
Author(s)
Perinel, S; Pourchez, J; Leclerc, L; Avet, J; Durand, M; Prévôt, N; Cottier, M; Vergnon, JM
Year
2017
Is Peer Reviewed?
1
Journal
Scientific Reports
EISSN:
2045-2322
Volume
7
Page Numbers
43121
Language
English
PMID
28233793
DOI
10.1038/srep43121
Web of Science Id
WOS:000395171200001
Abstract
Anatomical models to study aerosol delivery impose huge limitations and extrapolation to humans remains controversial. This study aimed to develop and validate an ex vivo human-like respiratory tract model easy to use and relevant to compare to in vivo human data. A human plastinated head is connected to an ex vivo porcine pulmonary tract ventilated artificially by passive expansion. A physiological study measures "pleural" depressions, tidal volumes, and minute ventilation for the respiratory rates chosen (10, 15, and 20 per minute) with three inspiratory/expiratory ratios (1/1, 1/2, and 1/3). Scintigraphy with (81m)Krypton assesses the homogeneity of the ventilation. Forty different experiments were set for validation, with 36 (90%) ventilating successfully. At a respiratory rate of 15/minute with inspiratory/expiratory ratio of 1/2, the tidal volume average was 824 mL (standard deviation, 207 mL). The scintigraphy performed on 16 ex vivo models (44.4%), showed homogenous ventilation with great similarity to human physiological studies. Ratio of the peripheral to central count rates were equally correlated with human data published in the literature. This new model, combining research feasibility and human physiology likeness, provides a realistic approach to human inhalation and therefore can be an interesting tool in aerosol regional deposition studies.
Tags
Other
•
Exposure Factors Handbook (Post 2011)
Pubmed (August 2017)
WOS (August 2017)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity