Health & Environmental Research Online (HERO)


Print Feedback Export to File
3603495 
Journal Article 
Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area 
Nanus, L; McMurray, JA; Clow, DW; Saros, JE; Blett, T; Gurdak, JJ 
2017 
Yes 
Environmental Pollution
ISSN: 0269-7491
EISSN: 1873-6424 
223 
644-656 
English 
Current and historic atmospheric nitrogen (N) deposition has impacted aquatic ecosystems in the Greater Yellowstone Area (GYA). Understanding the spatial variation in total atmospheric deposition (wet + dry) of N is needed to estimate air pollution deposition critical loads for sensitive aquatic ecosystems. This is particularly important for areas that have an increasing contribution of ammonia dry deposition to total N (TN), such as the GYA. High resolution geostatistical models and maps of TN deposition (wet + dry) were developed using a variety of techniques including ordinary kriging in a geographic information system, to evaluate spatial variability and identify areas of elevated loading of pollutants for the GYA. TN deposition estimates in the GYA range from <1.4 to 7.5 kg N ha(-1) yr(-1) and show greater variability than wet inorganic N deposition. Critical loads of TN deposition (CLTNdep) for nutrient enrichment in aquatic ecosystems range from less than 1.5 ± 1.0 kg N ha(-1) yr(-1) to over 4.0 ± 1.0 kg N ha(-1) yr(-1) and variability is controlled by differences in basin characteristics. The lowest CLTNdep estimates occurred in high elevation basins within GYA Wilderness boundaries. TN deposition maps were used to identify critical load exceedances for aquatic ecosystems. Estimated CLTNdep exceedances for the GYA range from 17% to 48% depending on the surface water nitrate (NO3(-)) threshold. Based on a NO3(-) threshold of 1.0 μmol L(-1), TN deposition exceeds CLTNdep in approximately 30% of the GYA. These predictive models and maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess atmospheric N deposition. 
• Nitrate/Nitrite
     Broad LitSearch 2016/1/1 - 2017/12/5
          Refs found by LitSearch but not ATSDR/IARC
          PubMed
          WoS
     Refs found only by 2017 LitSearch or Citation Mapping
     Ref Types 12/2017
          All Others
     LitSearch Update 2016-2017
          PubMed
          WoS
• ISA NOxSOxPM Ecology (2018)
     Cited in the Second Draft
          Chapter 1
          Appendix 9
• ISA NOxSOxPM Ecology (2020- Final Project Page)
     Cited
          Integrated Synthesis
          Appendix 9