Health & Environmental Research Online (HERO)


Print Feedback Export to File
3729551 
Journal Article 
Migration of defect clusters and xenon-vacancy clusters in uranium dioxide 
Chen Dong; Gao Fei; Deng Hui-Qiu; Liu Bo; Hu Wang-Yu; Sun Xin 
2014 
Yes 
International Journal of Modern Physics B
ISSN: 0217-9792 
28 
18 
The possible transition states, minimum energy paths (MEPs) and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide (UO2) have been investigated using the dimer and the nudged elastic-band (NEB) methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier for the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult. 
Defect clusters; migration mechanism; minimum energy paths; vacancy-assisted mechanism 
IRIS
• Uranium
     Uranium Literature Search Update 3/2017
          WOS
• Uranium Toxicological Review
     Date limited literature search 2011-2021
          New to this search
          WOS