Health & Environmental Research Online (HERO)

Print Feedback Export to File
Journal Article 
Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments 
Ariyarathna, T; Vlahos, P; Smith, RW; Fallis, S; Groshens, T; Tobias, C 
Environmental Toxicology and Chemistry
ISSN: 0730-7268
EISSN: 1552-8618 
The lack of knowledge on the fate of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly in marine ecosystems, constrains the application of bioremediation techniques in explosive-contaminated coastal sites. The authors present a comparative study on anaerobic biodegradation and mineralization of (15) N-nitro group isotopically labeled TNT and RDX in organic carbon-rich, fine-grained marine sediment with native microbial assemblages. Separate sediment slurry experiments were carried out for TNT and RDX at 23°C for 16 d. Dissolved and sediment-sorbed fractions of parent and transformation products, isotopic compositions of sediment, and mineralization products of the dissolved inorganic N pool ((15) NH4(+) ,(15) NO3(-) ,(15) NO2(-) , and (15) N2 ) were measured. The rate of TNT removal from the aqueous phase was faster (0.75 h(-1) ) than that of RDX (0.37 h(-1) ), and (15) N accumulation in sediment was higher in the TNT (13%) than the RDX (2%) microcosms. Mono-amino-dinitrotoluenes were identified as intermediate biodegradation products of TNT. Two percent of the total spiked TNT-N is mineralized to dissolved inorganic N through 2 different pathways: denitration as well as deamination and formation of NH4(+) , facilitated by iron and sulfate reducing bacteria in the sediments. The majority of the spiked TNT-N (85%) is in unidentified pools by day 16. Hexahydro-1,3,5-trinitro-1,3,5-triazine (10%) biodegrades to nitroso derivatives, whereas 13% of RDX-N in nitro groups is mineralized to dissolved inorganic N anaerobically by the end of the experiment. The primary identified mineralization end product of RDX (40%) is NH4(+) , generated through either deamination or mono-denitration, followed by ring breakdown. A reasonable production of N2 gas (13%) was seen in the RDX system but not in the TNT system. Sixty-eight percent of the total spiked RDX-N is in an unidentified pool by day 16 and may include unquantified mineralization products dissolved in water. Environ Toxicol Chem 2017;36:1170-1180. © 2016 SETAC. 
• RDX (121-82-4)
     Database Searches November 2017
          Pubmed 11/17