Health & Environmental Research Online (HERO)


Print Feedback Export to File
3848729 
Journal Article 
Measurement of reactive species generated by dielectric barrier discharge in direct contact with water in different atmospheres 
Kovacevic, VV; Dojcinovic, BP; Jovic, M; Roglic, GM; Obradovic, BM; Kuraica, MM 
2017 
Yes 
Journal of Physics D: Applied Physics
ISSN: 0022-3727
EISSN: 1361-6463 
50 
15 
The formation of hydroxyl radical and long-living chemical species (H2O2, O-3, NO3- and NO2-) generated in the liquid phase of a water falling film dielectric barrier discharge in dependence on the gas atmosphere (air, nitrogen, oxygen, argon and helium) was studied. The chemical molecular probe dimethyl sulfoxide was employed for quantification of. OH, and the influence of hydroxyl radical scavenging on formation of reactive oxygen and nitrogen species was investigated. In addition to liquid analysis, plasma diagnostics was applied to indicate possible reaction pathways of plasma-liquid interaction. The highest. OH production rate of 1.19 x 10 (5) mol l (1) s (1) was found when water was treated in oxygen, with a yield of 2.75 x 10(-2) molecules of. OH per 100 eV. Formation of hydrogen peroxide in air, nitrogen and argon discharges is determined by recombination reaction of hydroxyl radicals, reaching the highest yield of about 0.7 g kWh(-1) when distilled water was treated in argon discharge. Ozone formation was dominant in oxygen and air discharges. Strong acidification along with formation of reactive nitrogen species was detected in water treated in air and nitrogen discharges. 
water falling film DBD; plasma-liquid interaction; non-thermal plasma; hydroxyl radical; plasma chemistry