Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3976395
Reference Type
Journal Article
Title
Seahorse Xfe 24 Extracellular Flux Analyzer-Based Analysis of Cellular Respiration in Caenorhabditis elegans
Author(s)
Luz, AL; Smith, LL; Rooney, JP; Meyer, JN
Year
2015
Is Peer Reviewed?
Yes
Journal
Current Protocols in Toxicology
ISSN:
1934-9254
EISSN:
1934-9262
Volume
66
Page Numbers
25.7.1-15
Language
English
PMID
26523474
DOI
10.1002/0471140856.tx2507s66
Abstract
Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and intercellular as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XF(e) 24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler), and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters [basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity, and proton leak] of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans.
Tags
Other
•
Exposure Factors Handbook (Post 2011)
Pubmed (August 2017)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity