Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
3980470
Reference Type
Journal Article
Title
G-loading and vibration effects on heart and respiration rates
Author(s)
Godinez, A; Liston, DB; Ayzenberg, R; Toscano, WB; Cowings, PA; Stone, LS
Year
2014
Is Peer Reviewed?
Yes
Journal
Aviation, Space, and Environmental Medicine
ISSN:
0095-6562
Volume
85
Issue
9
Page Numbers
949-953
Language
English
PMID
25197894
DOI
10.3357/ASEM.4015.2014
Abstract
BACKGROUND:
Operational environments expose pilots and astronauts to sustained acceleration (G loading) and whole-body vibration, alone and in combination. Separately, the physiological effects of G loading and vibration have been well studied; both have effects similar to mild exercise. The few studies of combined G loading and vibration have not reported an interaction between these factors on physiological responses.
METHODS:
We tested the effects of G loading (+1 and +3.8 G(x)) and vibration (0.5 gx at 8, 12, and 16 Hz), alone and in combination, on heart and respiration rate.
RESULTS:
We observed an effect of G loading on heart rate (average increase of 23 bpm, SD 12) and respiration rate (average increase of 5 breaths per minute, SD 5), an effect of vibration on heart rate, and an interaction on heart rate. With vibration, we observed heart rate increases of 4 bpm (SD: 3) with no increase in respiration rate. In the +1 G(x) condition, the largest heart rate increase occurred during low-frequency (8 Hz) vibration, while at +3.8 G(x), the largest heart rate increase occurred during high-frequency (16 Hz) vibration, demonstrating interaction.
DISCUSSION:
Consistent with previous reports, our G-loading and vibration effects are similar to mild exercise. In addition, we observed an interaction between G loading and vibration on heart rate, with maximum heart rates occurring at a higher vibration frequency at +3.8 G(x) compared to +1 G(x). The observed interaction demonstrates that G-loading and vibration effects are not independent and can only be properly assessed during combined exposure.
Tags
Other
•
Exposure Factors Handbook (Post 2011)
Pubmed (August 2017)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity