Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4188589
Reference Type
Journal Article
Title
Nature of the Infrared Transition of Colloidal Indium Nitride Nanocrystals: Nonparabolicity Effects on the Plasmonic Behavior of Doped Semiconductor Nanomaterials
Author(s)
Liu, Z; Beaulac, R
Year
2017
Is Peer Reviewed?
Yes
Journal
Chemistry of Materials
ISSN:
0897-4756
EISSN:
1520-5002
Volume
29
Issue
17
Page Numbers
7507-7514
DOI
10.1021/acs.chemmater.7b02545
Web of Science Id
WOS:000410868600055
Abstract
As-synthesized colloidal indium nitride (InN) nanocrystals are degenerately doped with carrier densities large enough to lead to strong localized surface plasmon resonances (LSPR) in the infrared. Intriguingly, the LSPR energy is almost independent of carrier density, which premises that simple classical models that are often used to describe metallic systems inadequately describe the plasmonic response of InN nanoparticles. Here, an oxidative titration approach is used to directly quantify carrier densities in colloidal InN nanocrystals, eliminating the need to rely on any specific model. A size-independent carrier density value of (7.4 +/- 0.4) x 1020 cm(3) is obtained for diameters varying between 4 and 9 nm, corresponding to about 30 to 300 electrons per nanocrystal, depending on size. Upon oxidation with nitrosonium salts, the carrier density in InN nanocrystals can be reduced to (3.9 +/- 0.3) x 1020 cm(3), also independent of size. The unusual plasmonic signatures of colloidal InN nanocrystals are shown to arise from the nonparabolicity of the conduction band dispersion, which explains the nearly invariant LSPR energy as a function of carrier density, as well as the size dependence of the LSPR energy.
Tags
•
Inorganic Mercury Salts (2)
Mercuric Sulfide
Litsearch 1999-2018
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity