Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4190204
Reference Type
Journal Article
Title
Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease
Author(s)
Jablonski, EM; Webb, AN; Mcconnell, NA; Riley, MC; Hughes, FM
Year
2004
Is Peer Reviewed?
Yes
Journal
American Journal of Physiology: Cell Physiology
ISSN:
0363-6143
EISSN:
1522-1563
Volume
286
Issue
4
Page Numbers
C975-C985
Language
English
PMID
14644770
DOI
10.1152/ajpcell.00180.2003
Web of Science Id
WOS:000220032900027
Abstract
Apoptosis is characterized by a conserved series of morphological events beginning with the apoptotic volume decrease (AVD). This study investigated a role for aquaporins (AQPs) during the AVD. Inhibition of AQPs blocked the AVD in ovarian granulosa cells undergoing growth factor withdrawal and blocked downstream apoptotic events such as cell shrinkage, changes in the mitochondrial membrane potential, DNA degradation, and caspase-3 activation. The effects of AQP inhibition on the AVD and DNA degradation were consistent in thymocytes and with two additional apoptotic signals, thapsigargin and C(6)-ceramide. Overexpression of AQP-1 in Chinese hamster ovary (CHO-AQP-1) cells enhanced their rate of apoptosis. The AVD is driven by loss of K(+) from the cell, and we hypothesize that after the AVD, AQPs become inactive, which halts further water loss and allows K(+) concentrations to decrease to levels necessary for apoptotic enzyme activation. Swelling assays on granulosa cells, thymocytes, and CHO-AQP-1 cells revealed that indeed, the shrunken (apoptotic) subpopulation has very low water permeability compared with the normal-sized (nonapoptotic) subpopulation. In thymocytes, AQP-1 is present and was shown to colocalize with the plasma membrane receptor tumor necrosis factor receptor-1 (TNF-R1) both before and after the AVD, which suggests that this protein is not proteolytically cleaved and remains on the cell membrane. Overall, these data indicate that AQP-mediated water loss is important for the AVD and downstream apoptotic events, that the water permeability of the plasma membrane can control the rate of apoptosis, and that inactivation after the AVD may help create the low K(+) concentration that is essential in apoptotic cells. Furthermore, inactivation of AQPs after the AVD does not appear to be through degradation or removal from the cell membrane.
Tags
•
Methylmercury
ADME Search: Jan 1990 - Nov 2018
Results with mercury
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity