Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4193874
Reference Type
Journal Article
Title
Pathways of production and delivery of hepatocyte exosomes
Author(s)
Chen, L; Chen, R; Kemper, S; Brigstock, DR
Year
2017
Is Peer Reviewed?
Yes
Journal
Journal of Cell Communication and Signaling
ISSN:
1873-9601
EISSN:
1873-961X
Volume
12
Issue
1
Page Numbers
343-357
Language
English
PMID
29063370
DOI
10.1007/s12079-017-0421-7
Web of Science Id
WOS:000429401900036
Abstract
Hepatocyte exosomes (ExoHep) are proposed to mediate physiological or pathophysiological signaling in a variety of hepatic target cells. ExoHep were purified from the medium of primary mouse hepatocytes or AML12 cells and characterized as ~100 nm nanovesicles that were positive for proteins commonly found in exosomes (CD9, CD81, flotillin) or hepatocytes (asialoglycoprotein receptor). Ethanol treatment of hepatocytes caused increased ExoHep release and increased cellular mRNA expression of components involved in intracellular vesicle trafficking (Rab 5a,b,c, Rab 7a, Rab 27a,b) or exosome biogenesis via the ESCRT (HGS, Alix, STAM1, TSG101, VTA1, YKT6) or ceramide (nSmase2) pathways. RNA interference of HGS, Alix, TSG101 or nSmase 2 caused exosome production by normal or ethanol-treated hepatocytes to be reduced. In mice, in vivo administration of fluorescently-labeled ExoHep resulted in their accumulation in the liver and preferential localization to hepatic stellate cells (HSC) or hepatocytes, the latter of which showed enhanced ExoHep binding when isolated from fibrotic mice. In cell co-cultures, the intercellular transfer of RNA from hepatocytes to hepatocytes or HSC was blocked by the exosome inhibitor GW4869. ExoHep binding to HSC or hepatocytes occurred via mechanisms that involved heparin-like molecules and cellular integrin αv or β1 subunits , and resulted in a reversal of fibrosis-associated gene expression in HSC and of ethanol-induced damage in hepatocytes. These studies provide insight regarding the regulation and/or participation of exosome biogenesis or trafficking components in hepatocytes and show that ExoHep can mediate therapeutic changes in activated HSC or injured hepatocytes that occur downstream of heparin- or integrin-dependent binding interactions.
Tags
•
Inorganic Mercury Salts (2)
Mercuric Sulfide
Litsearch 2018-2019
WOS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity