Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4248154
Reference Type
Journal Article
Title
Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and mu Plasma printing
Author(s)
Verkuijlen, ROF; van Dongen, MHA; Stevens, AAE; van Geldrop, J; Bernards, JPC
Year
2014
Is Peer Reviewed?
Yes
Journal
Applied Surface Science
ISSN:
0169-4332
Volume
290
Page Numbers
381-387
DOI
10.1016/j.apsusc.2013.11.089
Web of Science Id
WOS:000329060100057
Abstract
In this study, we investigated the effect of UV-ozone and mu Plasma printing on surface modification of polycarbonate (PC) and polyethylene naphthalate (PEN). The effects on the wetting behaviour was studied, in terms of surface energy and chemical modification of the treated substrate, by analysis of attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Both UV-ozone and mu Plasma printing are effective ways to modify the wettability of both polymer substrates, substantially increasing the wetting envelope after a short treatment period. This increase is primarily due to an increase of the polar part of the surface energy. This is confirmed by ATR-FTIR and XPS, which show the formation of oxygen containing groups as well as a decrease in the aromatic C C bonds on the surface of the substrate due to the treatment. For both types of surface treatment, prolonged exposure showed no further increase in wettability, although continuous change in chemical composition of the surface was measured. This effect is more evident for UV-ozone treatment, as a larger increase in O/C ratio of the surface was measured as compared to mu Plasma printing. It can be concluded that mu Plasma printing results in a more chemically selective modification as compared to UV-ozone. In the case that chemical selectivity and treatment time are considered important, mu Plasma printing is favourable over UV-ozone. (C) 2013 Elsevier B.V. All rights reserved.
Keywords
Dielectric barrier discharge; UV-ozone; mu Plasma printing; Surface modification; Surface energy; Attenuated total reflectance-Fourier; transform infrared spectrometry (AT-FTIR); X-ray photoelectron spectroscopy (XPS); Wetting
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Excluded
Keyword Search Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity