Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4249399
Reference Type
Journal Article
Title
Life cycle assessment of novel supercritical methyl propionate process with carbon dioxide feedstock
Author(s)
Stouten, SC; Anastasopoulou, A; Hessel, V; Wang, Q
Year
2017
Volume
2
Issue
5
Page Numbers
688-695
DOI
10.1039/c7re00094d
Web of Science Id
WOS:000412242600011
Abstract
The alkoxycarbonylation reaction can be realized in continuous flow under supercritical conditions by utilizing CO2 as a feedstock instead of CO. Conventionally, the synthesis of the methyl propionate is achieved in the first step of the Lucite Alpha process through the hydroesterification of ethylene with methanol and carbon monoxide. In this paper, synthesis of the methyl propionate process by replacing the carbon monoxide feedstock with CO2 and using a more robust and less expensive catalyst is simulated and evaluated from the perspective of environmental influence. A life cycle assessment was done of the methyl propionate production via the supercritical process utilizing CO2 as feedstock. For all nine impact categories - AP, GWP, EP, FAETP, HTP, Land use, MAETP, ODP and CED -, the novel process was compared to the performance of the existing state-of-the-art carbon monoxide-based process, the Lucite Alpha process. An 80% impact reduction was found for both the Global Warming Potential and the Ozone Depletion Potential. The major contribution to the impact reduction stems from the change from CO to CO2 as a feedstock, since the impact from CO as feedstock is strongly negative while the impact from CO2 as feedstock is strongly positive. Yet, also the supercritical conditions themselves show a notable environmental benefit, besides providing the enabling function for the new chemistry. A remarkable effect on steam, electricity, and cooling energy is given. The higher pressure required for the supercritical CO(2)d process was found to have minimal effect on the electricity use for compression.
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Excluded
Keyword Search Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity