Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4249764
Reference Type
Journal Article
Title
Efficacy of gaseous ozone for reducing microflora and foodborne pathogens on button mushroom
Author(s)
Akata, I; Torlak, E; Erci, F
Year
2015
Is Peer Reviewed?
1
Journal
Postharvest Biology and Technology
ISSN:
0925-5214
EISSN:
1873-2356
Volume
109
Page Numbers
40-44
DOI
10.1016/j.postharvbio.2015.06.008
Web of Science Id
WOS:000361251200005
Abstract
During growth, mushrooms can be contaminated with both saprophytic and pathogenic microorganisms derived from various points of contamination. This study was performed to evaluate the efficacy of gaseous ozone for reduction of microbial load and elimination of Salmonella, Listeria monocytogenes and Escherichia colt O157:H7 on white button mushroom (Agaricus bisporus (J.E. Lange) Imbach). Whole mushroom samples were exposed to gaseous ozone up to 60 mm at concentrations of 2.8 and 5.3 mg L-1. The level of yeast and mold population naturally present on mushrooms was reduced more than 1.43 log after ozonation at 5.3 mg L-1 for 45 mm. Exposure to ozone at 2.8 and 5.3 mg L-1 for 60 min yielded 2.44 and 3.07 log reductions in aerobic plate counts, respectively. Initial levels of Salmonella, L monocytogenes and E. coli O157:H7 populations on inoculated mushrooms reduced by ranging 2.10 and 2.76 log after 60 min of treatment performed at concentration of 2.8 mg L-1, respectively. Ozonation at 5.3 mg L-1 for 60 mm reduced the initial counts of Salmonella, L monocytogenes and E. coli O157:H7 by 3.61, 2.80 and over 3.41 log, respectively. These results suggest that gaseous ozone treatment can improve the microbial safety and postharvest quality of mushrooms. (C) 2015 Elsevier B.V. All rights reserved.
Keywords
Button mushroom; Ozone; Microbial reduction; Salmonella; Listeria monocytogenes; Escherichia coli O157:H7
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Excluded
Keyword Search Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity