Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4251693
Reference Type
Journal Article
Title
FoxO1 negatively regulates leptin-induced POMC transcription through its direct interaction with STAT3
Author(s)
Ma, W; Fuentes, G; Shi, X; Verma, C; Radda, GK; Han, W
Year
2015
Is Peer Reviewed?
Yes
Journal
Biochemical Journal
ISSN:
0264-6021
EISSN:
1470-8728
Volume
466
Issue
2
Page Numbers
291-298
Language
English
PMID
25510553
DOI
10.1042/BJ20141109
Abstract
FoxO1, which is up-regulated during early stages of diet-induced leptin resistance, directly interacts with STAT3 and prevents STAT3 from binding to specificity protein 1 (SP1)-pro-opiomelanocortin (POMC) promoter complex, and thereby inhibits STAT3-mediated regulation of POMC transcription. FoxO1 also binds directly to the POMC promoter and negatively regulates its transcription. The present study aims to understand the relative contribution of the two interactions in regulating POMC expression. We studied the structural requirement of FoxO1 for its interaction with STAT3 and POMC promoter, and tested the inhibitory action of FoxO1 mutants by using biochemical assays, molecular biology and computer modelling. FoxO1 mutant with deletion of residues Ala137-Leu160 failed to bind to STAT3 or inhibit STAT3-mediated POMC activation, although its binding to the POMC promoter was unaffected. Further analysis mapped Gly140-Leu160 to be critical for STAT3 binding. The identified region Gly140-Leu160 was conserved among mammalian FoxO1 proteins, and showed a high degree of sequence identity with FoxO3, but not FoxO4. Consistently, FoxO3 could interact with STAT3 and inhibit POMC promoter activity, whereas FoxO4 could not bind to STAT3 or affect POMC promoter activity. We further identified that five residues (Gln145, Arg147, Lys148, Arg153 and Arg154) in FoxO1 were necessary in FoxO1-STAT3 interaction, and mutation of these residues abolished its interaction with STAT3 and inhibition of POMC promoter activity. Finally, a FoxO1-STAT3 interaction interface model generated by computational docking simulations confirmed that the identified residues of FoxO1 were in close proximity to STAT3. These results show that FoxO1 inhibits STAT3-mediated leptin signalling through direct interaction with STAT3.
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Keyword Search
Topic Classified Experimental
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity