Health & Environmental Research Online (HERO)


Print Feedback Export to File
4252672 
Journal Article 
Review 
Dynamical screening effects in correlated electron materials-a progress report on combined many-body perturbation and dynamical mean field theory: 'GW + DMFT' 
Biermann, S 
2014 
Yes 
Journal of Physics: Condensed Matter
ISSN: 0953-8984
EISSN: 1361-648X 
26 
17 
173202 
English 
We give a summary of recent progress in the field of electronic structure calculations for materials with strong electronic Coulomb correlations. The discussion focuses on developments beyond the by now well established combination of density functional and dynamical mean field theory dubbed 'LDA + DMFT'. It is organized around the description of dynamical screening effects in the solid. Indeed, screening in the solid gives rise to dynamical local Coulomb interactions U(ω) (Aryasetiawan et al 2004 Phys. Rev. B 70 195104), and this frequency dependence leads to effects that cannot be neglected in a truly first principles description. We review the recently introduced extension of LDA + DMFT to dynamical local Coulomb interactions 'LDA + U(ω) + DMFT' (Casula et al 2012 Phys. Rev. B 85 035115, Werner et al 2012 Nature Phys. 1745-2481). A reliable description of dynamical screening effects is also a central ingredient of the 'GW + DMFT' scheme (Biermann et al 2003 Phys. Rev. Lett. 90 086402), a combination of many-body perturbation theory in Hedin's GW approximation and dynamical mean field theory. Recently, the first GW + DMFT calculations including dynamical screening effects for real materials have been achieved, with applications to SrV O3 (Tomczak et al 2012 Europhys. Lett. 100 67001, Tomczak et al Phys. Rev. B submitted (available electronically as arXiv:1312.7546)) and adatom systems on surfaces (Hansmann et al 2013 Phys. Rev. Lett. 110 166401). We review these and comment on further perspectives in the field. This review is an attempt to put elements of the original works into the broad perspective of the development of truly first principles techniques for correlated electron materials.