Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4253557
Reference Type
Journal Article
Title
Genetic inactivation or pharmacological inhibition of Pdk1 delays development and inhibits metastasis of Braf(V600E)::Pten(-/-) melanoma
Author(s)
Scortegagna, M; Ruller, C; Feng, Y; Lazova, R; Kluger, H; Li, JL; De, SK; Rickert, R; Pellecchia, M; Bosenberg, M; Ronai, ZA
Year
2014
Is Peer Reviewed?
1
Journal
Oncogene
ISSN:
0950-9232
EISSN:
1476-5594
Volume
33
Issue
34
Page Numbers
4330-4339
Language
English
PMID
24037523
DOI
10.1038/onc.2013.383
Abstract
Phosphoinositide-dependent kinase-1 (PDK1) is a serine/threonine protein kinase that phosphorylates members of the conserved AGC kinase superfamily, including AKT and protein kinase C (PKC), and is implicated in important cellular processes including survival, metabolism and tumorigenesis. In large cohorts of nevi and melanoma samples, PDK1 expression was significantly higher in primary melanoma, compared with nevi, and was further increased in metastatic melanoma. PDK1 expression suffices for its activity, owing to auto-activation, or elevated phosphorylation by phosphoinositide 3'-OH-kinase (PI3K). Selective inactivation of Pdk1 in the melanocytes of Braf(V600E)::Pten(-/-) or Braf(V600E)::Cdkn2a(-/-)::Pten(-/-) mice delayed the development of pigmented lesions and melanoma induced by systemic or local administration of 4-hydroxytamoxifen. Melanoma invasion and metastasis were significantly reduced or completely prevented by Pdk1 deletion. Administration of the PDK1 inhibitor GSK2334470 (PDKi) effectively delayed melanomagenesis and metastasis in Braf(V600E)::Pten(-/-) mice. Pdk1(-/-) melanomas exhibit a marked decrease in the activity of AKT, P70S6K and PKC. Notably, PDKi was as effective in inhibiting AGC kinases and colony forming efficiency of melanoma with Pten wild-type (WT) genotypes. Gene expression analyses identified Pdk1-dependent changes in FOXO3a-regulated genes, and inhibition of FOXO3a restored proliferation and colony formation of Pdk1(-/-) melanoma cells. Our studies provide direct genetic evidence for the importance of PDK1, in part through FOXO3a-dependent pathway, in melanoma development and progression.
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Keyword Search
Topic Classified Experimental
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity