Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4255210
Reference Type
Journal Article
Title
Application of atomic layer deposited dopant sources for ultra-shallow doping of silicon
Author(s)
Kalkofen, B; Amusan, AA; Lisker, M; Burte, EP
Year
2014
Is Peer Reviewed?
1
Journal
Physica Status Solidi. C: Current Topics in Solid State Physics
ISSN:
1862-6351
Book Title
Physica Status Solidi C-Current Topics in Solid State Physics
Volume
11
Issue
1
Page Numbers
41-45
DOI
10.1002/pssc.201300185
Web of Science Id
WOS:000334667200009
Abstract
The advanced silicon semiconductor technology requires doping methods for production of ultra-shallow junctions with sufficiently low sheet resistance. Furthermore, advanced 3-dimensional topologies may require controlled local doping that cannot be achieved by ion-implantation. Here, the application of the atomic layer deposition (ALD) method for pre-deposition of dopant sources is presented. Antimony oxide and boron oxide were investigated for such application. Ozone-based ALD was carried out on silicon wafers by using triethylantimony or tris-(dimethylamido) borane. Very homogeneous Sb2O5 deposition could be achieved on flat silicon wafers and in trench structures. The thermal stability of antimony oxide layers was investigated by rapid thermal annealing experiments. The layers were not stable above 750 degrees C. Therefore, this material failed to act as dopant source so far.
In contrast, ultra-shallow boron doping of silicon from ALD grown boron oxide films was successful. However, pure B2O3 films were highly unstable after exposure to ambient air. The boron oxide films could be protected by thin Sb2O5 or Al2O3 films that were in-situ grown by ALD. Low temperature ALD of Al2O3 at 50 degrees C from trimethylaluminium (TMA) and ozone was investigated in detail with respect of its protective effect on boron oxide. Interestingly, it was observed that already one ALD cycle of TMA and O-3 resulted in significant increase in stability of the boron oxide in air. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
atomic layer deposition; dopant sources; ultra shallow doping
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Excluded
Keyword Search Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity