Health & Environmental Research Online (HERO)


Print Feedback Export to File
4255738 
Journal Article 
UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a) 
Davis, ME; Bernard, F; Mcgillen, M; Fleming, EL; Burkholder, JB 
2016 
Yes 
Atmospheric Chemistry and Physics
ISSN: 1680-7316
EISSN: 1680-7324 
16 
12 
8043-8052 
English 
The potential impact of CCl2FCF3 (CFC-114a) and the recently observed CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), and CCl3CF3 (CFC-113a) chlorofluorocarbons (CFCs) on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235aEuro-nm over the temperature range 207-323aEuro-K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs), and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years) of 63.6 (61.9-64.7), 51.5 (50.0-52.6), 55.4 (54.3-56.3), and 105.3 (102.9-107.4) for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2 sigma uncertainty in the UV absorption spectra and O(D-1) rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs) with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs) were estimated to be 4260 (CFC-112), 3330 (CFC-112a), 3650 (CFC-113a), and 6510 (CFC-114a) for the 100-year time horizon. 
Meteorology; Chlorofluorocarbons; Absorption spectra; Global warming; Ozone depletion; Atmospheric models; Photolysis; Data analysis; Photochemicals; Uncertainty; Two dimensional models; Stratosphere; Infrared spectra; Greenhouse gases; Fourier transforms; Infrared absorption; Mathematical models; Ultraviolet radiation; Spectra; Wavelength; Climate change; Atmospheric absorption; Photochemistry; Spectrum analysis; Coefficients; Absorption; Ultraviolet absorption; Depletion; Temperature range; Montreal Quebec Canada