Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4302489
Reference Type
Journal Article
Title
Differential Expression of Phenylalanine Ammonia-Lyase in Different Tissues of Sugarcane (Saccharum officinarum L.) during Development
Author(s)
Kolahi, M; Jonoubi, P; Majd, A; Tabandeh, MR; Hashemitabar, M
Year
2013
Is Peer Reviewed?
Yes
Journal
BioResources
ISSN:
1930-2126
Volume
8
Issue
4
Page Numbers
4912-4922
Web of Science Id
WOS:000328280700012
Abstract
The phenylpropanoid pathway serves as a rich source of metabolites in plants. It is required for the biosynthesis of lignin and acts as a starting point for the production of many other important compounds involved in growth and development. Phenylalanine ammonia-lyase (PAL) catalyzes the first step of the phenylpropanoid pathway. PAL gene expression changes during the growth and development of plants as it regulates the synthesis of lignin and other phenylpropanoid compounds. The gene expression of sugarcane (Saccharum officinarum L.) PAL (SoPAL) was analyzed using quantitative real-time PCR (qPCR) and the comparative Delta Delta Ct method in different tissues during different developmental stages. The results showed that SoPAL was expressed in all tissues and developmental stages. SoPAL mRNA levels were increased from germination to tillering stages, except in the sheath, and from tillering to grand growth stages in the leaf and stem. PAL expression decreased from the grand growth to maturation stages in all tissues except the sheath. The highest expression of SoPAL occurred in the stem during the grand growth stage, while its lowest expression occurred in the leaf during germination (p<0.05). In conclusion, PAL, as a rate-limiting enzyme of the phenylpropanoid pathway, displays critical roles in the development of sugarcane, particularly in lignified tissues.
Keywords
Development; Lignified; Phenylalanine ammonia-lyase; Saccharum officinarum L.; Tissue expression
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Ecology
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity