Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4310922
Reference Type
Journal Article
Title
Salicylic Acid Induces Changes in Mango Fruit that Affect Oviposition Behavior and Development of the Oriental Fruit Fly, Bactrocera dorsalis
Author(s)
Pagadala Damodaram, KJ; Aurade, RM; Kempraj, V; Roy, TK; Shivashankara, KS; Verghese, A
Year
2015
Is Peer Reviewed?
1
Journal
PLoS ONE
EISSN:
1932-6203
Volume
10
Issue
9
Page Numbers
e0139124
Language
English
PMID
26422203
DOI
10.1371/journal.pone.0139124
Web of Science Id
WOS:000362175700071
Abstract
The Oriental fruit fly, Bactrocera dorsalis (Hendel) is an important quarantine pest around the globe. Although measures for its control are implemented worldwide through IPM and male annihilation, there is little effect on their population. Hence, there is a need for new strategies to control this minacious pest. A strategy that has received negligible attention is the induction of 'natural plant defenses' by phytohormones. In this study, we investigated the effect of salicylic acid (SA) treatment of mango fruit (cv. Totapuri) on oviposition and larval development of B. dorsalis. In oviposition choice assays, gravid females laid significantly less eggs in SA treated compared to untreated fruit. Headspace volatiles collected from SA treated fruit were less attractive to gravid females compared to volatiles from untreated fruit. GC-MS analysis of the headspace volatiles from SA treated and untreated fruit showed noticeable changes in their chemical compositions. Cis-ocimene and 3-carene (attractants to B. dorsalis) were reduced in the headspace volatiles of treated fruit. Further, reduced pupae formation and adult emergence was observed in treated fruit compared to control. Increased phenol and flavonoid content was recorded in treated fruit. We also observed differential expression of anti-oxidative enzymes namely catalase (CAT), polyphenoloxidase (PPO) and peroxidase (POD). In summary, the results indicate that SA treatment reduced oviposition, larval development and adult emergence of B. dorsalis and suggest a role of SA in enhancing mango tolerance to B. dorsalis.
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Ecology
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity