Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4315023
Reference Type
Journal Article
Title
Predicting the potential distribution of Lantana camara L. under RCP scenarios using ISI-MIP models
Author(s)
Qin, Z; Zhang, JE; Ditommaso, A; Wang, RL; Liang, KM
Year
2016
Is Peer Reviewed?
Yes
Journal
Climatic Change
ISSN:
0165-0009
EISSN:
1573-1480
Volume
134
Issue
1-2
Page Numbers
193-208
DOI
10.1007/s10584-015-1500-5
Web of Science Id
WOS:000367198900014
Abstract
Projections of anthropogenically-induced global climate change and its impacts on potential distributions of invasive species are crucial for implementing effective conservation and management strategies. Lantana camara L., a popular ornamental plant native to tropical America, has become naturalized in some 50 countries and is considered one of the world's worst weeds. To increase our understanding of its potential extent of spread and examine the responses of global geographic distribution, predictive models incorporating global distribution data of L. camara were generated. These models were used to identify areas of environmental suitability and project the effects of future climate change based on an ensemble of the four global climate models (GCMs) within the Inter-Sectoral Impact Model Intercomparis on Project (ISI-MIP). Each model was run under the four emission scenarios (Representative Concentration Pathways, RCPs) using the Maximum entropy (Maxent) approach. Future model predictions through 2050 indicated an overall expansion of L. camara, despite future suitability varying considerably among continents. Under the four RCP scenarios, the range of L. camara expanded further inland in many regions (e.g. Africa, Australia), especially under the RCP85 emission scenario. The global distribution of L. camara, though restricted within geographical regions of similar latitude as at present (35A degrees N similar to 35A degrees S), was projected to expand equator-ward in response to future climate conditions. Considerable discrepancy in predicted environmental suitability for L. camara among GCMs highlights the complexities of the likely effects of climate change on its potential distribution and the need to improve the reliability of predictions in novel climates.
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Climate
Title-Abstract Screening (SWIFT-AS) - Excluded
Manually Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity