Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4322363
Reference Type
Journal Article
Title
Projected river discharge in the Euphrates-Tigris Basin from a hydrological discharge model forced with RCM and GCM outputs
Author(s)
Bozkurt, D; Sen, OL; Hagemann, S
Year
2015
Is Peer Reviewed?
Yes
Journal
Climate Research
ISSN:
0936-577X
EISSN:
1616-1572
Volume
62
Issue
2
Page Numbers
131-147
DOI
10.3354/cr01268
Web of Science Id
WOS:000349412000004
Abstract
The hydrological discharge (HD) model of Max Planck Institute for Meteorology is forced by a variety of climate model datasets to investigate the future of discharge in the Euphrates-Tigris Basin. The data include daily time series of surface runoff and sub-surface runoff outputs of 2 global climate models (GCMs) (the SRES A1B scenario simulation of ECHAM5/MPIOM and the RCP 4.5 scenario simulation of MPI-ESM-LR) and the dynamically downscaled outputs of ECHAM5/MPIOM and NCAR-CCSM3 scenario (SRES A1FI, A2 and B1) simulations. The suite of simulations enables a comprehensive analysis of the projected river discharge, and allows a comparison between CMIP5 simulations of MPI-ESM-LR and CMIP3 results from its predecessor ECHAM5/MPIOM on a basin scale. We demonstrate that HD simulations forced with relatively low-resolution GCM outputs are not good at reproducing the seasonal cycle of discharge, which is typically characterized by less flow in the peak season and an earlier peak in annual discharge. Simulations forced with the MPI-ESM-LR yield more robust information on the annual cycle and timing of the annual peak discharge than ECHAM5-forced simulations. In contrast to GCM-forced simulations, high-resolution RCM-forced simulations reproduce the annual cycle of discharge reasonably well; however, overestimation of discharge during the cold season and bias in the timing of springtime snowmelt peaks persist in the RCM-forced simulations. Different RCM-forced scenario simulations indicate substantial decreases in mean annual discharge for the Euphrates and Tigris Rivers by the end of the century, ranging from 19-58%. Significant temporal shifts to earlier days (3-5 wk by the end of the 21st century) in the center time of the discharges are also projected for these rivers. As the basin is considered water-stressed and the region is strongly influenced by water-scarcity events, these unfavorable changes may potentially increase water disputes among the basin countries.
Keywords
Climate change; Middle East; River discharge; Dynamical downscaling; Regional climate modeling
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Climate
Title-Abstract Screening (SWIFT-AS) - Excluded
SWIFT-AS Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity