Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
4439622
Reference Type
Journal Article
Title
Dry Matter Losses and Methane Emissions During Wood Chip Storage: the Impact on Full Life Cycle Greenhouse Gas Savings of Short Rotation Coppice Willow for Heat
Author(s)
Whittaker, C; Macalpine, W; Yates, NE; Shield, Ian
Year
2016
Is Peer Reviewed?
Yes
Journal
BioEnergy Research
ISSN:
1939-1234
Volume
9
Issue
3
Page Numbers
820-835
DOI
10.1007/s12155-016-9728-0
Web of Science Id
WOS:000381433800012
Abstract
A life cycle assessment (LCA) approach was used to examine the greenhouse gas (GHG) emissions and energy balance of short rotation coppice (SRC) willow for heat production. The modelled supply chain includes cutting multiplication, site establishment, maintenance, harvesting, storage, transport and combustion. The relative impacts of dry matter losses and methane emissions from chip storage were examined from a LCA perspective, comparing the GHG emissions from the SRC supply chain with those of natural gas for heat generation. The results show that SRC generally provides very high GHG emission savings of over 90 %. The LCA model estimates that a 1, 10 and 20 % loss of dry matter during storage causes a 1, 6 and 11 % increase in GHG emissions per MWh. The GHG emission results are extremely sensitive to emissions of methane from the wood chip stack: If 1 % of the carbon within the stack undergoes anaerobic decomposition to methane, then the GHG emissions per MWh are tripled. There are some uncertainties in the LCA results, regarding the true formation of methane in wood chip stacks, non-CO2 emissions from combustion, N2O emissions from leaf fall and the extent of carbon sequestered under the crop, and these all contribute a large proportion of the life cycle GHG emissions from cultivation of the crop.
Keywords
Life cycle assessment; Storage; Short rotation coppice willow; Losses
Tags
NAAQS
•
ISA-Ozone (2020 Final Project Page)
Literature Search Results
Literature Search - Included
Citation Mapping
Atmospheric Science - Background Ozone
Title-Abstract Screening (SWIFT-AS) - Included
Title-Abstract Screening (SWIFT-AS) - Included
Full-Text Screening Excluded
Full-Text Screening Excluded
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity